Presynaptic induction and expression of homosynaptic depression at Aplysia sensorimotor neuron synapses.
نویسندگان
چکیده
The cellular mechanisms underlying the induction and expression of homosynaptic depression at the glutamatergic synapse between Aplysia sensory and motor neurons were studied in dissociated cell culture. Intracellular microelectrodes were used to stimulate action potentials in the presynaptic sensory neuron and record the depolarizing EPSP from the motor neuron. Homosynaptic depression (HSD) was induced by repeatedly stimulating the sensory neuron at rates as low as one action potential per minute. Activation of postsynaptic Glu receptors was neither sufficient nor necessary to induce HSD. Thus, repeated applications of exogenous Glu did not depress the synaptically evoked EPSP. Moreover, normal HSD was observed when the sensory neuron was stimulated during a period when the Glu receptors were blocked with the antagonist DNQX. The induction of HSD is thus likely to occur within the presynaptic terminal. We explored the role of presynaptic calcium in the induction of HSD by injecting the sensory neuron with EGTA, a relatively slow calcium chelator that does not alter rapid release but effectively buffers the slow residual calcium transient thought to be important for plasticity. EGTA had little effect on HSD, indicating that residual Cai is not involved. HSD does not appear to involve a decrease in presynaptic calcium influx, because there was no change in the presynaptic calcium transient, measured by calcium indicator dyes, during HSD. We conclude that HSD is induced and expressed in the presynaptic terminal, possibly by a mechanism directly coupled to the release process.
منابع مشابه
Burst-induced synaptic depression and its modulation contribute to information transfer at Aplysia sensorimotor synapses: empirical and computational analyses.
The Aplysia sensorimotor synapse is a key site of plasticity for several simple forms of learning. Plasticity of this synapse has been extensively studied, albeit primarily with individual action potentials elicited at low frequencies. Yet, the mechanosensory neurons fire high-frequency bursts in response to even moderate tactile stimuli delivered to the skin. In the present study, we extend th...
متن کاملInhibitor of glutamate transport alters synaptic transmission at sensorimotor synapses in Aplysia.
Aplysia sensory neurons possess high-affinity glutamate uptake activity that is regulated by serotonin. To gain insight into the physiological role of glutamate uptake in sensory neurons, we examined whether blockade of glutamate transport altered synaptic transmission. We also examined whether glutamate transport affected homosynaptic depression and posttetanic potentiation (PTP). In the prese...
متن کاملDesensitization of postsynaptic glutamate receptors contributes to high-frequency homosynaptic depression of aplysia sensorimotor connections.
Withdrawal reflexes of Aplysia are mediated in part by a monosynaptic circuit of sensory (SN) and motor (MN) neurons. A brief high-frequency burst of spikes in the SN produces excitatory postsynaptic potentials (EPSPs) that rapidly decrease in amplitude during the burst of activity. It is generally believed that this and other (i.e., low-frequency) forms of homosynaptic depression are entirely ...
متن کاملPresynaptic and postsynaptic mechanisms of a novel form of homosynaptic potentiation at aplysia sensory-motor neuron synapses.
Previous studies have shown that homosynaptic potentiation produced by rather mild tetanic stimulation (20 Hz, 2 sec) at Aplysia sensory-motor neuron synapses in isolated cell culture involves both presynaptic and postsynaptic Ca2+ (Bao et al., 1997). We have now investigated the sources of Ca2+ and some of its downstream targets. Although the potentiation lasts >30 min, it does not require Ca2...
متن کاملHabituation in Aplysia: the Cheshire cat of neurobiology.
The marine snail, Aplysia californica, is a valuable model system for cell biological studies of learning and memory. Aplysia exhibits a reflexive withdrawal of its gill and siphon in response to weak or moderate tactile stimulation of its skin. Repeated tactile stimulation causes this defensive withdrawal reflex to habituate. Both short-term habituation, lasting < 30 min, and long-term habitua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 21 شماره
صفحات -
تاریخ انتشار 1998